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M: For an attempt at the upper value for k.
Finds where x+y =k meets 3 =6—(x—3)” once by using an appropriate method.
Eg Sets k—x=6—(x—3) and proceeds to a 3TQ

Al: Correct 3TQ x* ~7x +(k +3) =0 The = 0 may be implied by subsequent work

MI: Uses the "discriminant” condition. Accept use of b* =4ac oc or b?...4ac where ... is any inequality

leading to a criical value for k. Eg. one root :49—4x1x(/,+3):0:k:¥

Al: Range of values for k= {kﬂilz(%} Acccpllzs[l%) or exact equivalent
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ALT

As above Bl 22a
Finds where x+y =k meets ¥=6—(x—3)’ once by using an
appropriate method. Eg. Sets gradient of y=6—(x—3)° M1 3la
equal to ~1

2x+6=-1=x=35 AT | Lb
Finds point of intersection and uses this to find upper value of k.
¥=6-(3.5-3)" =5.75 Hence using k =3.5+5.75=9.25 ML |21
Range of values for k= (k:7 < k <9.25} Al |25
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- e & & - m
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@ |y 08 18 s a Grdy Fria RV
way2 | YT T eay Gof function of .
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7) seen or implied. | BI

‘Some attempt to substitute 7= 0.5 into their %

which contains  in order to find m, and cither
applies y — (their y,) = (their m, )}(x ~ their x,) | M1

o finds c from their y,) = (their m, )(their x,) + ¢
and uses their numerical ¢ iny = (their m,)x + ¢
V=8x+13 or y=13+8x | Al o0

must be numerical values in order to award M1 131

© An attempt to eliminate 1. See notes. | M1
©
Way 1

Achieves a correct equation in x and y only | Al o.e.

Sx+2
x+4

(or implied equation) | Al eso

“An attempt to climinate 1._See notes.

Achieves a correct equation in x and y only
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Note:_Some or all of the work for part (c) can be recovered in part (a) or part (b) 8
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“A full method leading to the value
of a being found

da-b

‘Question 1 Notes
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L@ | Note
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Note | You can ignore subsequent working following on from a correct expression for %’ interms of 1.
() Note | Usinga changed gradient — or 7{|h:|r ;)) is MO.
their &
4
Note | Final Al: A correct solution is required from a correct d—f
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Question 5 Notes
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10 s 15
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Note | Give the final AO for more than one value sated for &
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Note | Writing x=4, ,-:5‘/; followed by [sﬁ _4) AO.
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Question 5 Notes

5.()

Note
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(b)

‘Mi""] dependent on the first method mark being awarded.

Al | Correet algebra with no incorrect working leading to y = *——=——= or a=2and h=-5

an cquati

an e andy.

Either: (ignoring sign sips or constant sips, noting that & can be 1)
« Combining all three parts of their x—3 + 8+ [i] to form a single fraction with a
common denominator of £A(x3). Accept three scparae factions with the same
denominator.

o Combining both parts of their x + 5 + [ﬂ) .+ (where x +5 is their 4[‘7’]] +8),

to form a single fraction with a common denominator of +k(x~3). Accept two separate:
fractions with the same denominator.

« Multiplics both sides of their y=x—3 +8+ [i;] ortheir y=x+5+ (%) by
+k(x—3). Note thatall terms in their cquation must be multplied by k(x—3).
‘Condone “inyisible” brackes for dM1
Fios
-3

Some examples for the award of dM1 in (b):
(x=3)(x-3)+8+10
o y= &P 48410

AMO for y=x-3+8+ — . Should be .+ 8(x~3)+..

3 3
AMOfor y=x -3+ —0 2 EEIEIIO0 o g been omilted.
-3 3
AMOfor y=x 45+ S0 L KOS b e Sem3) e
3 3

AMO for y=x+5+ l} — M(x=3)=x(x~3)+ 5(x~3) + 10(x~3). Should be just 10.
.

3 with no intermediate working is AMIAL
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(x+ 1) =12¢081 = 12(1-sin’ 1) = 12 - 12sin’¢
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Question 5 Notes

o+ 2) > cosen( 2] () or ew1+2)> £ s =L
6 6 6 6 2 2

5@ | Ml
Note | Ifa candidate states cos(4 + B) = cos Acos B + sin Asin B , but there is an crror in its application
then give MI.
A the dM1 mark wl ndent on the first method mark
Main | dMI | Adds their expanded x (which is in terms of 7) to 2sin?
Note | Writing x + y = ...is not needed in the Main Scheme method.
Alt1 | dMI | Forms an cquation inx, y and 7.
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Al*

Note

Note
Note

Note

Evidence of cos(%) and sin(%) evaluated and the proof is correct with no errors.

fx+y)= 4oos[: + %] + 2sin, by itself is MOMOAO.

Applies cos’t + sin’r =1 to achieve an equation containing only x's and y's.
leading (x + y)* + 3)*=12
Award Special Case BIBO for a candidate who writes down either

e (x+y) + 3y*=12 from no working

« a=3,b=12, but does not provide a correct proof.

Alternative method 2 is fine for M1 Al
Writing (x + y)*=12c0s*t followed by 12cos’7 + a(dsin’r) =b = a=3,b=12 isSC: BIBO

© and refers o cither cos”r + sin’r = 1 or 12cos’f + 12sin’ 1 =12
« and there is no incorrect working
would get MIAL
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Question 7 Notes

7.()

. o L dr A - a0
1M1 | Applies their < divided by their < or applies <. multiplied by their
o a6 by thelr g or spplies 3y multipled by
: M1 e dy
SC | Award Special Case I* MU if both 2 and 7 arc both correct.
1Al | Comeet i, 8003050 8 5 06ing or —Lsin20cos? @ or any equivalent form.
a 3sec’0 3
2% M1 | Some evidence of substituting & = T =45 into their %’
Note | For3* Ml and 4* M1, m(T) must be found by using %’.
M1 | applies m(N) = ’T‘) Numerical value for m(N) is required here.
m
™M1 o Applies y — 2= (their m, )(x - 3), where m(N) is a numerical value,
o finds ¢ by solving 2= (their m, )3 + ¢, where m(N) is a numerical value,
and my=———— ot my=—— or m, = —theirm(T).
their m(T) their m(T)
Note

‘This mark can be implied by subsequent working.
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®

M1
Note
Note

; or 1% or awrt 1.67 from a correct solution only.

Applying I ydx as f:ig ‘with their %. Ignore 7 or %x outside integral.

‘You can ignore the omission of an integral sign and/or d for the 1" M1.

Allow M1 07 x i 000 o[ 1 e 30" 0
Correct expression {1‘[ Ydx }: xj(Ams’ 0) 3560 {46}, (Allow the omission of d0)

IMPORTANT: The 7 can be recovered later, but as a correct statement only.

[}

146} . (Ignore d@). Note: 48 can be written as 24(2) for example.

2*'M1 | Applies cos26 = 2cos* @ - 1 to their integral. (Seen or implied.)
FTAMI* | which is dependent on the 1" MI mark.
Integrating cos’ @ to give £af £ fsin20, @0, % 0, un-simplified or simplified.
STAT | which is dependent on the 3° M1 mark and the 1" M1 mark.
Integrating cos” @ to give %9 + %smw, un-simplified or simplified.
‘This can be implied by kcos’ @ giving %9 + %smw, un-simplified or simplified.
4™dM1 | which is dependent on the 3" M1 mark and the 1" M1 mark.
Some evidence of applying lmits of £ and 0 (0 can be implicd) toan integrated function in 0
S | Applies 1 %x(z)’ (3 their part (a) answer) -
Note | Alsoallow the " M1 for /_ =z S(%x - ;) {av} . which includes the correet imits.
P P
Note | A decimal answer of 91.33168464... (without a correct exact answer) is A,
Note | The 7 in the volume formula is only needed for the 1 Al mark and the final accuracy mark.
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4
@ | ra |G
& o, . .
o o 36+ 9) (2 -2 un-simplified or simplified.
Al | 6(x” +9)7(2x) & @ impl impl
2*aM1 | Dependent on the 1" M1 mark if a candidate uses this method
For substituting x = 3 into their %’
&
e.at PG,2),
ie.at PG,
From this point onwards the original scheme can be applied.
s )
1M1 | For || —£—| {dx] (7 not required for this mark
®) J-[i“iﬂ]( o q )
36 )
Al [Forz|{ 22| {d}  (x required for this mark)

To integrate, a substitution of x = 3tan# is required which will lead to ! 48c0s’0d@ and so

from this point onwards the original scheme can be applied.
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1M1

1AL

2*amt

Dependent on the 1 M1 mark if a candidate uses this method
For substituting x = 3to fmd%

wa_ &

4 dr dv
From this point onwards the original scheme can be applied.

ie.at P(3,2), 2(3)
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Question

S Scheme Marks
4. sin'),  -Z<i<T
2 2
@ 4 4 Atleastone of & o2 correct. | BI
@ =20t dlzzsmzl sz:4smlwsr & g
‘ Both & and & are corrcet. | B!
a
So, _2sin [ deostsing _, G o Applies their & divided by their &
a [T
and substiates £ = = into their &
6 ar
&
Corectvalue for of 1 | Al cao eso
141
®) Mi
or y= 72[1 - (i) y =7 orequivalent. | ] csoisw
Bl
31
(© |Range: 0<F(x)<2 or 0<y<2or 0<F<2 See notes | B BI

21
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Notes for Question 4

(@

BI: Atleast one of % m% correct. Note: that this mark can be implied from their working.

BI: Both % and ‘% are correct. Note: that this mark can be implied from their working.

MI: Applies their %div:dzdby their % ‘and attempts to substitute 1 = %mm their expression for %.
‘This mark may be implied by their final answer.

dy_sin

dx 2cost

Al: For an answer of | by correct solution only.

le.

followed by an answer of % would be M1 (implied).

Note: Don’t just look at the answer! A number of candidates are finding :l =1 from incorrect methods.
ix

@ &

Note: Applying %d ided by their %" MO, even if they state

Special Case: Award SC: BOBOMIAL for % ~2c0st,

x

which after substitution of ¢ = ., yields %:1
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Notes for Question 4 Continued

[0}

©

MI: Uses the correct double angle formula cos2r =1 - 2sin’f or cos2t =2cos’r —1 or
cos21 = cos’( —sin’ 1 in an attempt to get y in terms of sin’ or get  in terms of cos’ 1
or get y in terms of sin’7 and cos’t . Writing down y = 2sin® is fine for M1.

Al: Achieves y = “z;or un-simplified equivalents in the form y = f(x). For example:

2 =) xY 4-x ¥
e —of2 —2-g1-(% Ax,x
e ey (2) oy [ [z])" y I

‘and you can ignore subsequent working if a candidate states a correct version of the Cartesian equation.
IMPORTANT: Please check working as this result can be fluked from an incorrect method.
Award A0 if there isa +¢ added to their answer.

BI: FEither k =2 ora candidate writes down —2 < x < 2. Note: ~2 < k <2 unless k stated as 2 is BO.

Note: The values of 0 and/or 2 need to be evaluated in this part
BI: Achieves an inclusive upper or lower limit, using acceptable notation. Eg: £(x)>0 or f(x)<2

Bl: 0<f(x)<2 or 0<y<2 or 0<f<2
Special Case: SC: BIBO for either 0< f(x) <2 or 0<f<2 or 0<y<2 or (0,2)
Special Case: SC: BIBO for 0< x < 2.
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IMPORTANT: Note that: Therefore candidates can use either y or f in place of f(x)

Examples:

0<x<2 isSC:BIBO
x>0 isBOBO

£(x) >0 is BOBO

x>0 isBOBO

0 £(x) > 2 is BOBO
0<f(x)<2 isBIBO.
£(x) <2 is BIBO

2 <f(x)< 2 is BOBO
[f <2 is BIBO

1 <f(x)<2 isBIBO
0<f(x)< 4 isBIBO
0<Range<2 isBIBO
0<Range <2 is BOBO.
Range < 2 is BIBO
[0.2] isBIBL

0<x<2 isBOBO
x<2 isBOBO

£(x) <2 is BOBO

x<2 isBOBO

0<f(x)<2 isBIBO

£(x) >0 is BIBO

£(x) >0 and f(x)<2 is BIBL Muststate AND for} N
£(x) >0 or £(x)<2 is BIBO.

[f(x)| =2 is BoBO

1<f(x)<2 isBOBO

0<£(x) <4 is BOBO

Range is in between 0 and 2 is BIBO

Range >0 is BIBO

Range >0 and Range < 2 is BIBO.

(0.2) is SCBIBO

Aliter
4. ()
Way2

SoBI,BI.

So implied M1, Al
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Notes for Question 4 Continued

Aliter Correet differentiation of their Cartesian equation. | BIft
L@ & .
Way 3 Finds % = . using th corret Cartesian cquation only. | B
Finds the value of “x " when 1=~
N
and substitutes this into their <
&
Correet value for L of 1 | Al
a
Aliter
MI
4. (b)
Way2
(Must be i the form y = £(x)).
Al
Aliter
4. (b)
Way3 Rearranges to make rthe subject | |\
and substitutes the result into y.
y=1- cos(2sm" G)] Al o
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Way 5
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using a value of

M1
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Question

Marks

e Scheme
5. | Working parametrically:
1 or y=e™ -1
@ |fx=0=}0= Applies x =0 to obtain a value for £. | M1
When 1=2, y=2°- Correct value fory. | Al
121
. Applics =0 to obtain a value for 1.
—0=}0=2-1=1=0
® | ) (Must be scen in part (b)) | ™1
When - %(o x=1|a1
121
© BI
Attempts their 2 divided by their . | M1
ar a
1 1
812 = m(N) = —— MI
In2
MI Al e

3o ) o =3+ e x orequivaen Secnote
In2 8In2

151
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Area(R) = I(z - l).(f %]dl

x=-1>1=4 and x=151=0

Complete substitution
for both y anddv

Either 2 -
n2

@)
Za(n2)
or (2 -1)>taln2)2) -1

or (2-1)>

2
(2‘71)»“271

Depends on the previous method mark.
‘Substitutes their changed limits in ¢ and
subtracts either way round.

15
—>_ 2 or equivalent.
2In2 @

M1
BI

M1

Al

am1*

Al

161
15
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5.(a)

®

M1: Applies x =0 and obtains a value of 7.
Al: For y=2"—1=3ory=4-1=3
Alternative Solution 1.

MI: For substituting

=2 intoeither xor y.

7%(2):0 and y=2*

Alternative Solution 3:
MI: Applies

=0 and obtains a value of 7.
Al: Shows that =2 for both y=3and x=0.
MI: Applies y =0 and obtains a value of . Working must be seen in part (b).
Al: For finding x =1.

Note: Award MIAL for x





image39.png
©

@

@

BI: Both <&
ar

and %’ comect.  This mark can be implied by later working.

M: Their & divided by their & or  their & L
a a a
theie 7

MI: Uses their value of £ found in part (a) and applies m(N) =

Note: their % must be a function of 1.

m(T)’

MI: y -3 = (their normal gradient)x oy = (their normal gradient)x +3 or cquivalent.
Note: Allow M1 for y — 3 = (their changed tangent gradient) x
Note: Award MO for y -3 = (their tangent gradient):x.

1 1 1
Al: y-3= (x=0) or y=3+——x or y-3 (x~0) or (8In2)y - 24In2 = x
P R 0 ey 82 v nzsg 70 or (SIn2)y

L-3 1
(x-0) 82
‘Working in decimals is ok for the three method marks. B1, Al require exact values.

You can apply isw here.

M1: Complete substitution for both y anddx . So candidate should write down I(z‘ - 1){mm

B1: Changes limits from x 7. x=-1—>1=4 and x=1— 1=

b
M1*: Integrates 2' tly to give —
tegrat correctly o give =

. Note r=4and 1=0 seenis BL.

@)
Za(in2)

.. or integrates (2' - 1) to give cither —1 or *a(ln2)(2)-1.

Al: Correct integration of (2' 1) with respect to 1 to give %

dMI*: Depends upon the previous method mark.
i imits in £ and sublracts either way round.
Cdor g o B2 75, Elog,cfzorequivllan.
2in2 na 2in2 n2 Pl
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Number Scheme Marks
5.
® cquation...
..to arrive at a correet answer of 3. | Al
121
® | {y=05)0-rr 150-2-200x Applies y =0 to btain a value for. |
(Must be sen in part (b))
x=1 x=1al
121
£22°F, 221 (ML
© 2 )m2 -2(2%)in2 or cquivalent | Al
(Record M1AI as BIMI on ePEN)
At x=0, 50 m(1) =-$hn2 = m(N) = L Applies x=0 and m(N) = m(;) M
(x=0) or y=3+ ——x orcquivalent. s in the original scheme. | M1 Al oc
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Form the integral of their Cartesian
equation of C.
For 2°** — 1 with limits of x = -1 and

ke L(z

Either 2 2
“2m2
pees
Za(n2)

~1) > za()(2"™) - x

or (277 -1)>

(22 -1) o 2

Depends on the previous method mark.
‘Substitutes limits of -1 and their x, and

subtracts either way round.

L5 or cquivalent.
22 e

M1

BI

MI*

Al

am1*

Al

161
15

@

‘Alternative method: In Cartesian and applving u=2 —2x

Area(R) :I(z“ “1){ax} . where u=2-2¢  MO: Unless a candidate writes J‘(z”' —1)fax)

[ -0eHian

Then apply the “working parametrically” mark scheme.
Te. Thisis now M1 BI ...
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5.(d)ed

Applying the 2°Y M1* mark

MI*: Integrates 2 correctly to give ——

or integrates (21" ~ 1) to give cither

pros

Ta(in2)

or integrates (2~ 1) to give cither igl:hd or a(in2)2)-1.
MI* : Integrates ¢’ correctly to give <
or integrates (€% ~1) to give either i‘:(hz) 1 or ta(n2)e™)-1.
MI*: Integrates 2°* correctly to give:
“2m2
or integrates (277 1) to give cither 12““2) —x or ta(ln2)2"*)-x.
MI*: Integrates 2°°% etly t .
grates 27" cormely o give 7

—x or fa(ln2)2“")-x.
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Examples
Award MI* for (2 =1) > n22') -1
AwardMI* for (2 1) 2=

n2

AvardMI* for 2> 2=

n2
Award MO* for (2 ~1) > 2(2) ~1
Award MO* for (2 ~1) 2" 1

Award MO* for (2

Award MO* for (2'~1)—>

Wy
Award MO* for (2 ~1) > In2(2)
Award MO* for (2 ~1) > Int(2) ~1

s ¢ a1

is fine for MI*Al





image44.png
Question
Number

Scheme.

Marks

5.d)

Alternative method: For substitution u=2'

Area(R) = I(r - l).(f %]dl

where =2 = %
a

2= %y
&
x=-151=4>u=16 and x=1 > 1=0 > u=1

So area(R) =

fale-wl @) )

15 Inle 15

Complete substitution
for both y anddv

Both correct limits in ¢ or both,
correct limits in u.

If not awarded above, you can award
MI for this integral

Either 2/ > &

in2
i
2

or (2 -1)>

or (2 7|)ﬁ+a(m2xu),7

+a(ln2)

Eg

Depends on the previous

‘method mark.

‘Substitutes their changed limits in u
and subtracts either way round.

15 Il 15

- or -
22 22 ° 2l2

or _
202 2m2 ' 2l2
o equivalent.

M1

BI

MI*

Al

am1*

Al
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14(a)
Attempts to use cos 21 M1 21
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(b) When ="
(b) When 1=

(© x=3sin2r =3x2sintcost

x*=12sin’ rcos® £ =12(1-cos’t)cos*t

:lz(l,z)z
4)a

Alternative o (<)

y=2cos2+2
sin’ 2 +cos? 2 =1
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BI: Either one of % - 4\:05[1 + %] or % =—6sin2r . They do not have to be simplified.

BI: Both % and ‘% correct. They do not have to be simplified.

Any or both of the first two marks can be implied.
Don’t worry too much about their notation for the first two BI marks.

BI: Their % divided by their % or their Lx Note: This is a follow through mark.

Alternarive differentiation in part @)
x=2{Bsin + 2cost = %:Z«ﬁml —~2sint

y=3eostt-1) = L _3(dcostsin)
2 : &
or y=3cos’r =3sin’1 = X = Gcostsin—sint cost
&

or y=31=2sin’r) = <x=3(~dcostsini)





image49.png
5.(0)

MI: Candidate sets their numerator from part (a) or their ‘;l—" equal to 0.

Note that their numerator must be a trig function. Ignore % equal to 0 at this stage.

MI: Candidate substitutes a found value of 1, to attempt to find either one of x or y.

‘The first two method marks can be implied by ONE correct set of coordinates for (x, y) or (y, x) interchanged.
A correct point coming from NO WORKING can be awarded MIMI..

Al Atleast TWO sets of coordinates.

Al Atleast THREE sets of coordinates.

Al: ONLY FOUR correct sets of coordinates. If there are more than 4 sets of coordinates then award AQ.
Note: Candidate can use the diagram’s symmetry to write down some of their coordinates.

Note: When x= ASm(%] =2, y=3cos 0 =3 is acceptable for a pair of coordinates.

Also itis fine for candidates to display their coordinates on a table of values.
Note: The coordinates must be exact for the accuracy marks. le (3.46...,-3) or (-3.4¢

-3) is AO.

Note: % =0=> sinr =0 ONLY is fine for the first M1, and potentially the following MIATAOAO.
4

Note: 2= 0= cost =0 ONLY i fin fr the first M1 and potentalythe following MIALAQAD.

Note: ‘?E =0 sinf =0& cos =0 has the potential o achieve all five marks.

Note: It is possible for a candidate to gain full marks in part (b) if they make sign crrors in part (a)
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An alternative method for finding the coordinates of the two maximum points.

Some candidates may use y = 3cos 21 to write down that the y-coordinate of a maximum point is 3.

‘They will then deduce that 7 =0 or  and proceed to find the x-coordinate of their maximum point. These
‘candidates will receive no credit until they attempt to find one of the x-coordinates for the maximun point.

MIMI: Candidate states y =3 and attempts to substitute =0 or 7 into x:lsln[l-i-%].

MIMI can be implied by candidate stating either (2,3) or (2, ~3).
Note: these marks can only be awarded together for a candidate using this method.
Al: Forboth (2,3) or (-2,3).

A0A0: Candidate cannot achieve the final two marks by using this method. They can, however, achieve these
‘marks by subsequently solving their numerator equal to 0.
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V=rf(e-2) &
j(el'—z)’ dr= I(:“—4=1’+4)dx

A
3 2
x[‘T—%Mx] = 2[(64-32+4In4)—(4-8+4In2)]
= 7(36+4In2)

Alternative o (<) using parameters

v :nj(11 -2y %a

The limits are 1=2 and =4

x[gfﬂ’wﬂnt]‘ 7[(64-32+4In4)~(4-8+4In2)]

=7(36+4In2)

M

M

M1 A1

M

Al
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M1 A1
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Al
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©

Either finds the lower value for k =7

Bl 22a
or deduces that k(%
Finds whe =k =6-(x-3)"
inds where x-+ =k mects y =6-(+—3) M s
= k—x=6~(x~3)" and proceeds to 3TQ inx or y
Correct 3TQ inx X =Tx+(k+3)=0
Al Lib
Ory 3 +(7-2k)y+ (k> ~6k+3)=0
2 37
Uses b ~dac=0=> 49—4xIx(k+3)=0=k=| o
or M1 21
(777_1:)274xlx(k276k+3):0:k:(g]
3
Range of values for k= 1k :7 <k <7 Al 25
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Question
e o Scheme Marks
Q7 (a) =0 = 1(9-1)=1(3-1)(3+1)=0
£=03,-3 Any one correct value | B1
Atr=0, x=5(0) -4=—4 Method for finding one value of x | M1
Atr=3, x=5(3) -4=41
(Atr=-3, x=5(-3)"-4=41)
Atd, x=-4;atB, x=41 Both | At @)
® %:W Seen or implied | B1
dx 2
l[ydx:fyad,:j,(g—z Jordr M1 At
=[(o0r* ~10¢)ar
90¢ 10
= (+C =301 -26° (+C) A1
35 (0 (+0))
N0 1071 _30x3-2x3" (=324) M
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Uses b —4ac=0=> 49-4xIx(k+3)=0=k

or M1 21
(7-2k 4xlx(kl—ﬁk+3):0:k:(¥]
Y
Range of values for k= 1k :7 <k <7 Al 25
®)

(10 marks)
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(@)
MI: Uses cos2f =1—2sin7 in an attempt to climinate
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Al*: Proceeds to y = 6—(x—3)"without any errors
Allow a proof where they start with y = s—(x—3)‘.nd substitute the parametric coordinates. M1 is scored

for a correet cos 2 =1~2sin’ £ but Al is only scored when both sides are seen to be the same AND a
comment is made, hence proven, or similar .

(b)

MI: For sketching a (™) parabola with a maximum in quadrant one. It does not need to be symmetrical
Al For sketching a () parabola with a maximum in quadrant one and with end coordinates of (1,2) and

(52)
B1: Any suitable explanation as to why C does not include all points of y=6-(x~3%, xeR

This should include a reference to the limits on sin or cos with a link to a restriction on x or y.

For example
“As —1<sin7 <1 then 1< x <5’ Condone in words ‘x lies between | and 5° and strict inequalities
“As sinf<1 then x< 5’ Condone in words ‘x is less than 5

‘As ~1=cos(20)<1 then 2<y <6 * Condone in words ‘y lies between 2 and 6"

‘Withhold if the statement is incorrect Eg "because the domainis 2< x <5"

Do not allow a statement on the top limit of y as this is the same for both curves

©
B1: Deduces cither

»  the correct that the lower value of k=7 This can be found by substituting into (5,2)

x+y=k=k=Torsubstituting x=5 into x> ~Tx+(k+3)=0=>25-35+k+3=0

=>k=7

*  or deduces that k<¥Thismybeuvnrdulfmmm«wmk




